Zeta Functions of Infinite Graph Bundles

نویسندگان

  • SAMUEL COOPER
  • STRATOS PRASSIDIS
چکیده

We compute the equivariant zeta function for bundles over infinite graphs and for infinite covers. In particular, we give a “transfer formula” for the zeta function of infinite graph covers. Also, when the infinite cover is given as a limit of finite covers, we give a formula for the limit of the zeta functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bartholdi zeta functions of graph bundles having regular fibers

As a continuation of computing the Bartholdi zeta function of a regular covering of a graph by Mizuno and Sato in J. Combin. Theory Ser. B 89 (2003) 27, we derive in this paper some computational formulae for the Bartholdi zeta functions of a graph bundle and of any (regular or irregular) covering of a graph. If the fiber is a Schreier graph or it is regular and the voltages to derive the bundl...

متن کامل

Convergence of Zeta Functions of Graphs

The L-zeta function of an infinite graph Y (defined previously in a ball around zero) has an analytic extension. For a tower of finite graphs covered by Y , the normalized zeta functions of the finite graphs converge to the L-zeta function of Y . Introduction Associated to any finite graph X there is a zeta function Z(X,u), u ∈ C. It is defined as an infinite product but shown (in various diffe...

متن کامل

The Ihara Zeta Function of the Infinite Grid

The infinite grid is the Cayley graph of Z × Z with the usual generators. In this paper, the Ihara zeta function for the infinite grid is computed using elliptic integrals and theta functions. The zeta function of the grid extends to an analytic, multivalued function which satisfies a functional equation. The set of singularities in its domain is finite. The grid zeta function is the first comp...

متن کامل

New Non-Abelian Zeta Functions for Curves over Finite Fields

In this paper, we introduce and study two new types of non-abelian zeta functions for curves over finite fields, which are defined by using (moduli spaces of) semi-stable vector bundles and non-stable bundles. A Riemann-Weil type hypothesis is formulated for zeta functions associated to semi-stable bundles, which we think is more canonical than the other one. All this is motivated by (and hence...

متن کامل

Non-Abelian Zeta Functions For Function Fields

In this paper we initiate a geometrically oriented construction of non-abelian zeta functions for curves defined over finite fields. More precisely, we first introduce new yet genuine non-abelian zeta functions for curves defined over finite fields, by a ‘weighted count’ on rational points over the corresponding moduli spaces of semi-stable vector bundles using moduli interpretation of these po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007